Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(3): 799-816, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32920696

RESUMO

Plasmodesmata are intercellular pores connecting together most plant cells. These structures consist of a central constricted form of the endoplasmic reticulum, encircled by some cytoplasmic space, in turn delimited by the plasma membrane, itself ultimately surrounded by the cell wall. The presence and structure of plasmodesmata create multiple routes for intercellular trafficking of a large spectrum of molecules (encompassing RNAs, proteins, hormones and metabolites) and also enable local signalling events. Movement across plasmodesmata is finely controlled in order to balance processes requiring communication with those necessitating symplastic isolation. Here, we describe the identities and roles of the molecular components (specific sets of lipids, proteins and wall polysaccharides) that shape and define plasmodesmata structural and functional domains. We highlight the extensive and dynamic interactions that exist between the plasma/endoplasmic reticulum membranes, cytoplasm and cell wall domains, binding them together to effectively define plasmodesmata shapes and purposes.


Assuntos
Transporte Biológico/fisiologia , Plantas/metabolismo , Plasmodesmos/metabolismo , Comunicação Celular , Parede Celular/química , Parede Celular/metabolismo , Estruturas Citoplasmáticas/química , Retículo Endoplasmático/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plasmodesmos/química , Polissacarídeos/química , Polissacarídeos/metabolismo
2.
Curr Opin Plant Biol ; 53: 80-89, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31805513

RESUMO

Plasmodesmata pores control the entry and exit of molecules at cell-to-cell boundaries. Hundreds of pores perforate the plant cell wall, connecting cells together and establishing direct cytosolic and membrane continuity. This ability to connect cells in such a way is a hallmark of plant physiology and is thought to have allowed sessile multicellularity in Plantae kingdom. Indeed, plasmodesmata-mediated cell-to-cell signalling is fundamental to many plant-related processes. In fact, there are so many facets of plant biology under the control of plasmodesmata that it is hard to conceive how such tiny structures can do so much. While they provide 'open doors' between cells, they also need to guarantee cellular identities and territories by selectively transporting molecules. Although plasmodesmata operating mode remains difficult to grasp, little by little plant scientists are divulging their secrets. In this review, we highlight novel functions of cell-to-cell signalling and share recent insights into how plasmodesmata structural and molecular signatures confer functional specificity and plasticity to these unique cellular machines.


Assuntos
Comunicação Celular , Plasmodesmos , Membrana Celular , Parede Celular , Fenômenos Fisiológicos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...